AGENCY APPROVAL NOTICE

AAN No. 09544

Issue Date C

e **October 13, 2009**

Model name	ALD03B48, ALD11G48, ALD13Y48, ALD15M48
Astec Internal Model name (if applicable)	

Please be informed that captioned model new \Box modified \boxtimes revised \Box additional manufacturing location \Box construction is approved by mentioned agency and approval mark of the agency as per attached document can now be sticked on model label.

DESCRIPTION							
CSA	Astec Data Pack		SPRING	Certificate			
	Astec Statement of Compliance		SEMKO	Certificate			
	CSA Certification of Compliance		τυν	Notification of Test Result			
	CSA Certification Report		(Rheinland)	Certificate			
CCC	Certificate			Copy Answer for Revision			
C-TICK	Letter for Use of C-Tick Mark		τυν	Type Approval Confirmation			
DEMKO	Certificate		(Product Services)	Certificate			
DENAN	Certificate		UL	TCP Submittal Letter			
FIMKO	Certificate			Authorization Letter			
KTL Korea	Certificate		VDE	Status Report			
NEMKO	Status Report			Certificate			
	Certificate			Copy Answer for Revision			
NSW	Certificate		Others	UL Descriptive Report	\boxtimes		
ASTEC	Revision Letter to VDE		CE Marking	under LVD under LVD & EMC			

DISTRIBUTION				
ACP	Project Management	Joel Zaens, Jessie Buaron, Patrick Tang, Steven Shi		
	Safety Lab.	M. Torrijos, C. Gillego		
	Production QA	Rosalie Bautista / Michael Sustal / Haydee Blancaflor /Arceli Gade /Shirley Lan / XJ Han/John Kong / Jun Wu / Qin Liang / Tom Zhao / Jennifer Chavez / Abram Daniel Donato / DOC-CON/AECL1 / Zhong Qiu		
ASP	Safety Engg.			

	AAN REC		DGEMENT	PREPARED BY
То	: Product Safety Lab. (Hk	(/Pasig/CDE)		
From	: Production QA (M. Angel		
ABOV	E MENTIONED DOCUME	NTS RECEIVED		REVIEWED BY
				molent.
Signat	ure and Date			M. Torrijos

PS-FS11

File E186249	Vol. 1	Sec. 279	Page 1	Issued:	2008-05-20
		and Report		Revised:	2009-10-07

DESCRIPTION

PRODUCT COVERED:

*USR, CNR Component - DC-DC Converter, Models ALD10F48, ALD07A48, ALD03B48, ALD11G48, ALD13Y48 and ALD15M48 for use in Information Technology Equipment.

ELECTRICAL RATINGS:

MODEL	INPUT	OUTPUT
ALD10F48	DC +36 to +75 V 1.18 A	DC +3.3 V, 10 A Max.
ALD07A48	DC +36 to +75 V 1.10 A	DC +5.0 V, 7 A Max.
ALD03B48	DC +36 to +75 V 1.3 A	DC +12.0 V, 2.75 A Max.
ALD11G48	DC +36 to +75 V 1.0 A	DC +2.5 V, 11 A Max.
ALD13Y48	DC +36 to +75 V 0.9 A	DC +1.8 V, 13 A Max.
ALD15M48	DC +36 to +75 V 0.9 A	DC +1.5 V, 15 A Max.

TECHNICAL CONSIDERATIONS (NOT FOR FIELD REPRESENTATIVE'S USE):

General - The units are for use in products where the acceptability of the combination is determined by Underwriters Laboratories Inc.

*Both USR and CNR indicate investigation to the Standard for Safety of Information Technology Equipment, UL 60950-1, Second Edition dated March 27, 2007 and CAN/CSA C22.2 No. 60950-1-07, Second Edition, dated March 01, 2007.

*

File E186249	Vol. 1	Sec. 279	Page 1A	Issued:	2008-05-20
		and Report		New:	2009-10-07

Conditions of Acceptability - When installed in the end-use equipment, the following are the considerations to be made:

- 1. These DC-DC converters have been judged on the basis of the required creepages and clearances in the Second Edition of the Standard for Safety of Information Technology Equipment, UL 60950-1 and CAN/CSA-C22.2 No. 60950-1-07, Second Edition, Sub-clause 2.10, which covers the end-use product for which the component was designed. The functional insulations have been evaluated by conducting Component Failure Test per sub-clause 5.3.4 (c) of UL 60950-1, Second Edition and CAN/CSA-C22.2 No. 60950-1-07, Second Edition.
- 2. These DC-DC converters have only been evaluated for use in pollution degree 2 environment.
- 3. A suitable fire, mechanical and electrical enclosure shall be provided by end-use equipment.
- 4. Model ALD10F48 has been evaluated under 200 LFM forced air cooling and the following loading conditions, see ILL. 3 for the system details.
 - a. Maximum ambient temperature up to 85 $^{\circ}\text{C}$ at 7.9 A, with 36 V input.
 - b. Maximum ambient temperature up to 85 $^{\circ}\mathrm{C}$ at 6.5 A, with 75 V input.
 - c. Maximum ambient temperature up to 60 $^{\circ}\mathrm{C}$ at 10 A, with 36 V input.
 - d. Maximum ambient temperature up to 60 °C at 10 A, with 75 V input.

File E186249	Vol. 1	Sec. 279	Page 2	Issued:	2008-05-20
		and Report		Revised:	2009-10-07

Model ALD07A48 has been evaluated under 300 LFM and 700 LFM forced air 5. cooling and the following loading conditions, , see ILL. 3 for the system details.

At 300 LFM forced air cooling:

- Maximum ambient temperature up to 85 °C at 6.5 A, with 36 V input. а.
- b.
- Maximum ambient temperature up to 82 °C at 7.0 A, with 36 V input. Maximum ambient temperature up to 58 °C at 7.0 A, with 75 V input. Maximum ambient temperature up to 58 °C at 7.0 A, with 36 V up to с.
- d. 75 V input.
- At 700 LFM forced air cooling:
- Maximum ambient temperature up to 85 °C at 2.5 A, with 75 V input. e.
- Model ALD03B48 has been evaluated under 200 LFM and 400LFM forced air-6. cooling and the following loading conditions, see ILL. 3 for the system details.
 - At 200LFM forced air cooling:
 - a. Maximum ambient temperature up to 60 °C at 2.75 A, with 36 V input.
 - Maximum ambient temperature up to 59 °C at 2.75 A, with 75 V input. b. Maximum ambient temperature up to 60 °C at 2.75 A, from 36 V up to c.
 - 75 V input.
 - At 400LFM forced air cooling:

*

- d. Maximum ambient temperature up to 85 °C at 2.5 A, with 36 V input.
- e. Maximum ambient temperature up to 85 °C at 1.8 A, with 75 V input
- f. Maximum ambient temperature up to 85 °C at 1.8 A, from 36 V up to 75 V input.
- 7. Model ALD11G48 has been evaluated under 200 LFM, 300 LFM and 400LFM forced air-cooling and the following loading conditions, see ILL. 3 for the system details.
 - At 200LFM forced air cooling: Maximum ambient temperature up to 75 °C at 11 A, with 36 V input. a. Maximum ambient temperature up to 85 °C at 8.0 A, with 36 V input. b.
 - At 300LFM forced air cooling: Maximum ambient temperature up to 60 °C at 11 A, with 75 V input. с.
 - At 400LFM forced air cooling: Maximum ambient temperature up to 85 °C at 3.0 A, with 75 V input d.
- 8. Model ALD13Y48 has been evaluated under 200 LFM forced air cooling and the following loading conditions, see ILL. 3 for the system details.
 - Maximum ambient temperature up to 85 °C at 10.9 A, with 36 V input. a.
 - Maximum ambient temperature up to 85 °C at 7.0 A, from 36 V up to b. 75 V input.
 - Maximum ambient temperature up to 60 $^{\circ}$ C at 13 A, with 36 V and 75 V c. input.
 - Maximum ambient temperature up to 60 °C at 13 A, from 36 V up to d. 75 V input.

File E186249	Vol. 1	Sec. 279	Page 2A	Issued:	2008-05-20
		and Report		New:	2009-10-07

- 9. Model ALD15M48 has been evaluated under 200 LFM forced air cooling and the following loading conditions, see ILL. 3 for the system details.
 - a. Maximum ambient temperature up to 85 $^{\circ}$ C at 10.7 A, with 36 V input. b. Maximum ambient temperature up to 85 $^{\circ}$ C at 8.5 A, from 36 V up to
 - 75 V input. c. Maximum ambient temperature up to 45 °C at 15 A, with 36 V and 75 V input.
 - d. Maximum ambient temperature up to 45 $^\circ \mathrm{C}$ at 15 A, from 36 V up to 75 V input.
- 10. These DC-DC converters are classified as Level 3 as defined by UL 60950-1 and CAN/CSA-C22.2 No. 60950-1-07.
- 11. These DC-DC converters are not evaluated for end system mounting.
- 12. These DC-DC converters are considered as secondary component. The DC input of the power supply shall be separated from the AC mains by reinforced insulation.
- 13. DC-DC converter, Model ALD10F48 has no in-line fuse. The end product must provide for protection fuse (JDYX2), Littelfuse Inc (E10780), Type 2173.15, rated maximum 3.15 A, minimum 250 V, or Listed (JDYX) maximum 3.15 A, minimum 250 V.
- 14.DC-DC converter, Model ALD07A48 has no in-line fuse. The end product must provide for protection fuse (JDYX2), Hollyland Co Ltd (E156471), Type 50F, rated maximum 3.15 A, minimum 250 V, or Listed (JDYX) maximum 3.15 A, minimum 250 V.
- 15. DC-DC converter, Models ALD03B48 and ALD11G48 have no in-line fuse. The end product must provide for protection fuse (JDYX2), Hollyland Co Ltd (E156471), Type 50CF, rated maximum 2.5 A, minimum 250 V, or Listed (JDYX) maximum 2.5 A, minimum 250 V.
- 16. DC-DC converter, Models ALD13Y48 and ALD15M48 have no in-line fuse. The end product must provide for protection fuse (JDYX2), Hollyland Co Ltd (E156471), Type 5ET-010H, rated maximum 1 A, minimum 250 V, or Listed (JDYX) maximum 3.15 A, minimum 250 V.
- 17. These DC-DC converters are not intended to be repaired by service personnel in case of failure or component defect (unit can be thrown away).
- 18. These DC-DC converters maintain basic insulation from secondary input circuits to output circuits.
- 19. The Clearances and Creepage Distances have additionally been assessed for suitability up to 3000m elevation.
- 20.Input is considered as TNV-2 while output is SELV. Additional consideration shall be given during the end product investigation if the input voltage exceed 75 V.